1.5 Reaction Feasibility

Chemical reactions can be used to provide energy to do work

- e.g. petrol/diesel in car engines or an engine in a rocket
 - Chemicals are burned and their energy converted into work

However, conversion of energy into work is never 100% efficient

- Work energy derived from a chemical reaction is **always** less than the heat energy (ΔH) that is used
- A small part of the enthalpy change is never converted into work. It is referred to as unavailable energy.

 ΔH = work energy + 'unavailable energy'

• In thermodynamic terms:

 ΔH = free energy + entropy change

Entropy

In nature, there is a tendency towards disorder

- A brick wall changes into a disordered heap of bricks with age
- The reverse process will not happen spontaneously (but will with outside help to build it)

In thermodynamic terms

- Disorder is called entropy
- Entropy is a measure of the degree of disorder in a system
- The greater the disorder, the greater the entropy.

Entropy increases with temperature

- Solids only have vibrational energy
- Gases have vibrational and rotational motion
- Changes of state, like melting and boiling, increase entropy
 - Changes of state have no temperature change

At absolute zero temperature (OK or -273°C), crystal lattice has perfect order and zero entropy

- This is (one version of) the 3rd Law of Thermodynamics
- As solid is heated, Kinetic Energy and Entropy (S) increase
- Rapid increase in Entropy (S) at melting and boiling points (bpt>mpt)
- Entropy of a system is temperature dependant

The 2nd Law of Thermodynamics

- Total entropy of a reaction system and its surroundings always increases for a spontaneous process
- A spontaneous process is one which is thermodynamically possible
 - $\circ~$ Can take place on its own, irrespective of time taken

 $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$

- Decrease in entropy as "chaotic gas" is turned into a solid product.
- Heat energy released by reaction compensates by increasing the disorder in the surrounding air molecules.

Dracada	Entropy Change			
Process	System	Surroundings	Overall	
Mixing	Increase	No change	Increase	
Crystallisation	Decrease	Increase	Increase	
Polymerisation	Decrease	Increase	Increase	
Combustion of fuels	Increase	Increase	Increase	

Units of Entropy

Entropy is given the symbol S

- Standard entropy of a substance is the entropy of that substance under standard conditions
 - 1 mole of a substances at 1atm pressure at a specified temperature
- values used to calculate standard entropy change

units of entropy are Joules per Kelvin per mole (J K⁻¹ mol⁻¹)

e.g.
$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

S° 93 40 214

$$\Delta S^{\circ} = \Sigma S^{\circ}_{\text{products}} - \Sigma S^{\circ}_{\text{reactants}}$$

= (40+214) - (93)
= 141 J K⁻¹ mol⁻¹

<u>Free Energy</u>

In a thermodynamically-feasible endothermic reaction, there is a favourable entropy change *inside* the reaction mixture

• endothermic reaction can only take place if the entropy change is sufficiently favourable to overcome the less favourable endothermic enthalpy change

The combination of enthalpy and entropy change is known as the **Free Energy Change**.

• Free energy change is given the symbol ΔG

$$\Delta G = \Delta H - T \Delta S$$

- The sign of the free energy change ΔG can be used to predict the possibility of a reaction proceeding
 - $\circ~$ If change in free energy ΔG is a negative value then reaction is likely to happen spontaneously
 - If a positive ΔG value shows that a reaction is unlikely to happen unless external energy is available (i.e. it is heated)
- If measure under standard conditions, equation becomes:

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

- Where ΔG° = Standard Free Energy change (kJ mol⁻¹)
 - ΔH° = Standard Enthalpy change (kJ mol⁻¹)
 - T = Temperature

(K)

 ΔS° = Standard Entropy change (J K⁻¹mol⁻¹)

Question

1. Using the data given below, calculate the ΔG° at 298K and 1atm pressure for the reaction: $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$

Chemical	∆H⁰ _f (kJ mol⁻¹)	S° (J K ⁻¹ mol ⁻¹)
H ₂ (g)	0	131
<i>O</i> ₂ (g)	0	205
$H_2O(l)$	-286	70

Free Energy and Equilibrium

At equilibrium, the free energy of the system has reached minimum value

- free energy of products formed is equal to the free energy of the reactants left
 - G reactants products

 ΔG is large and negative

•

- ΔG is large and positive
- equilibrium lies on the side of the reactants

equilibrium lies on the side of the products

- ΔG is zero
- reactants and products are equally favoured

- at equilibrium, $\Delta G = 0$
- reaction will only proceed spontaneously in the forward direction until the reactant/product composition is achieved where $\Delta G=0$

Reaction Feasibility

• the feasibility of a chemical reaction, under standard conditions, can be predicited from the calculated value of the change in standard free energy ΔG° .

Example 1: At what temperature does the Haber Process become feasible?

	N ₂ (g)	+ 3H ₂ (g)	2NH ₃ (g)
$\Delta {\sf H^o}_{\sf f}$ (kJ mol ⁻¹)	0	0	2x 46.4 ∆H ^o reaction = -92.8kJ mol ⁻¹ = -92800J mol ⁻¹
S° (J K ⁻¹ mol ⁻¹)	191.6	3× 130.7	2x 193.2 $\Delta S^{\circ} = -197.3 \text{ J K}^{-1} \text{ mol}^{-1}$

When $\Delta G^{\circ} = 0$, products are favoured as much as reactants

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$ $T\Delta S^{\circ} = \Delta H^{\circ}$ $T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-92800 \text{ Jmol}^{-1}}{-197.3 \text{ JK}^{-1}\text{mol}^{-1}}$ $= 470\text{K} (=197^{\circ}\text{C})$

i.e. At 470K, reactants and products are equally favoured

- at temperature below 470K
 - \circ -T Δ S° is positive (i.e. Δ S° is negative)
 - \circ the lower the Temperature, the lower the ΔG°
 - Haber Process become feasible at Temperatures below 470K

<u>Example 2</u>: At what temperature does the decomposition of $MgCO_3$ take place?

		MgCO ₃ (s) —	→ MgO	(s) +	<i>CO</i> ₂ (g)	
$\Delta {\sf H^o}_{\sf f}$ (kJ mo	ol⁻¹)	-1117.2	-604	.1	-394	
S° (JK ⁻¹ mol ⁻	¹)	65.9	26.9)	213.8	
$\Delta H^{o}_{reaction}$	=	(-604.1) + (-39	4) - (-1117.2)	= +1	19.1 kJ mol ⁻¹ =	+ <u>119100J mol⁻¹</u>
ΔS°	=	(26.9) + (213	.8) - (65.9)	= <u>+1</u>	74.8 J K ⁻¹ mol ⁻¹ .	

Reaction becomes feasible when $\Delta G^{\circ} = 0$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = 0$$

$$T\Delta S^{\circ} = \Delta H^{\circ}$$

T =
$$\frac{\Delta H^{\circ}}{\Delta S^{\circ}}$$
 = $\frac{-119100 \text{ Jmol}^{-1}}{-174.8 \text{ JK}^{-1}\text{mol}^{-1}}$